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1. Brownian motion

Scottish botanist Robert Brown 

(1773 - 1858)

“While examining the form of these 

particles immersed in water, I 

observed many of them very 

evidently in motion. These motions 

were such as to satisfy me… that 

they arose neither from currents in 

the fluid, nor from its gradual 

evaporation, but belonged to the 

particle itself” (from p.8, D.K.C. 
MacDonald, 1962).

https://www.youtube.com/watch?v=R5t-oA796to 

Video 1: Microscope observation of pollen grains in water

https://www.youtube.com/watch?v=R5t-oA796to
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1. Brownian motion

o Random collisions between the 
particle and the gas molecules.

o How to model the particle-fluid 
interaction force?

o What is the characteristic 
distance and time for the particle 
movement?

o What trajectory will the particle 
follow?

Particle

Fluid 

molecule

https://www.youtube.com/watch?v=PDnPr3FiYnQ
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1. Brownian motion

Displacement of three particles: using a 
camera lucida Perrin marked the 
successive positions of each particle at 
regular intervals of time (30 s), before 
drawing straight lines to join the dots 
(Perrin, 1909, p. 81)

Perrin, J. (1909). Mouvement brownien et réalité moléculaire. In Annales de 

Chimie et de Physique (Vol. 18, pp. 1-114).



University of Minnesota
Driven to Discover

1. Brownian motion

Nowadays we can use optical 
tweezers to precisely measure 
the displacement of particles in a 
fluid in the time-scale of the 
particle momentum relaxationHuang, R., Chavez, I., Taute, K. M., Lukić, B., Jeney, S., Raizen, M. G., & Florin, E. L. (2011). 

Direct observation of the full transition from ballistic to diffusive Brownian motion in a 

liquid. Nature Physics, 7(7), 576-580.

At timescales once deemed 

immeasurably small by Einstein, 

the random movement of 

Brownian particles in a liquid is 

expected to be replaced by 

ballistic motion.
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1. Brownian motion

The particle moves in 1d with constant 
jumps of length 𝜆𝑝,1 during a time 

step Δ𝑡. The probability to move right 
or left is the same. Where will the 
particle be after n time steps?

Bernoulli process:

Binomial process:

Continuous form (Gaussian):

Move +𝑘𝜆𝑝,1 after n trials 

𝜆𝑝,1

Move Δ𝑥 after n time steps
Morán, J., Yon, J., & Poux, A. (2020). Monte Carlo aggregation code (MCAC) Part 1: 

Fundamentals. Journal of colloid and interface science, 569, 184-194.
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1. Brownian motion

Now, considering the time as a continuous variable 𝑡 = 𝑛Δ𝑡 and introducing 
the so-called diffusion coefficient,

𝐷 =
𝜆𝑝

2

2Δ𝑡
Then,

𝑓 Δ𝑥 =
1

4𝜋𝐷𝑡
𝑒−Δ𝑥2/(4𝐷𝑡), 𝑡 ≫ Δ𝑡

Extending this analysis to 3d we conclude: 𝐸 Δ𝑟2 = 6𝐷𝑡

𝐸 Δ𝑥2 = 2𝐷𝑡

As initially observed by 

A. Einstein (1905)
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2. The Langevin equation

Momentum relaxation time:

Momentum conservation Solution for the velocity (𝑣 𝑡 = 0 = 𝑣0)

𝜏 = 𝑚/𝑓: Momentum relaxation time

In this time-scale the particle will have a characteristic 

displacement of the order (persistent distance),

𝜆𝑝 = 𝜏𝑐
𝑐 =

8𝑘𝐵𝑇

𝜋𝑚
: Average Maxwellian velocity (𝑘𝐵 is the Boltzmann 

constant and 𝑇 the particle temperature)
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2. The Langevin equation

The model proposed by Paul Langevin,

Introducing a random, called Brownian, force 𝐹𝐵,

Particle-fluid interaction split 

into a systematic and 

fluctuating part

Important assumption: The 

Brownian force 𝐹𝐵 fluctuates 

much faster than the particle 

velocity 𝑣
The strength of the fluctuation depends on 

the friction coefficient (f) and the system 

temperature (T)
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2. The Langevin equation

Chandrasekhar analytical solution:

Chandrasekhar, S. (1943). Stochastic problems in physics and 

astronomy. Reviews of modern physics, 15(1), 1.
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2. The Langevin equation

Ermak and Buckholz algorithm-1:

Ermak, D. L., & Buckholz, H. (1980). Numerical integration of the Langevin equation: 

Monte Carlo simulation. Journal of Computational Physics, 35(2), 169-182.

𝐺 = 𝜎𝑣
2;   𝐼 = 𝜎𝑟

2;   𝐻 = 𝜎𝑣𝑟 =
𝑘𝐵𝑇

𝑚𝛽
1 − 𝑒−𝛽Δ𝑡 2

Stochastic fluctuation in velocity,

Stochastic fluctuation in position,

Sampled from the bivariate probability density 

function Ψ(𝑟, 𝑣) obtained by Chandrasekhar

𝑌𝑖 ∼ Gaussian(0, 1)

𝑚
𝑑𝑣

𝑑𝑡
= −𝑓𝑣 + 𝐹𝐵
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2. The Langevin equation

Ermak and Buckholz algorithm-2:

Ermak, D. L., & Buckholz, H. (1980). Numerical integration of the Langevin equation: 

Monte Carlo simulation. Journal of Computational Physics, 35(2), 169-182.
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3. Computational implementation

1. Solving the Langevin equation (LE) based on Ermak and 
Buckholz algorithm

2. Solving the LE by a 4th order Runge-Kutta

3. Using a Monte-Carlo method consistent with the LE

Suresh, V., & Gopalakrishnan, R. (2021). Tutorial: Langevin Dynamics methods for aerosol particle 

trajectory simulations and collision rate constant modeling. Journal of Aerosol Science, 155, 105746.
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3. Computational implementation

In a Monte Carlo approach every particle 
in a system is displaced individually:

o A particle moves ballistically along its 
persistent distance 𝜆𝑝

o A particle changes direction randomly 
after moving along 𝜆𝑝

o What is the time-step corresponding to 
𝜆𝑝 to be consistent with the Langevin 

equation?

Morán, J., Yon, J., & Poux, A. (2020). Monte Carlo aggregation code (MCAC) Part 1: 

Fundamentals. Journal of colloid and interface science, 569, 184-194.
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3. Computational implementation

A time step of Δ𝑡 = 𝑛𝜏 with 𝑛 =
3 is needed for a Brownian 

particle to reach a regime 

where it’s direction changes 

randomly without correlation in 

time.
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Fuel

streamline

zoom

3. Computational implementation

𝜆𝑝

Ballistic
motion

Diffusive
motion

particle

Monte Carlo Aggregation Code1 (MCAC),

https://gitlab.coria-cfd.fr/MCAC/MCAC 

1Morán, J., Yon, J., & Poux, A. (2020). Journal of Colloid and Interface Science, 569, 184-194.

https://gitlab.coria-cfd.fr/MCAC/MCAC
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4. Examples

Aerosol particle coagulation under van der 
Waals and image potentials

Van der Waals force (𝜔 = 𝑎𝑖/(𝑎𝑖 + 𝑎𝑗))

Image force

Ouyang, H., Gopalakrishnan, R., & Hogan, C. J. (2012). Nanoparticle collisions in the gas phase in the presence of singular 

contact potentials. The Journal of Chemical Physics, 137(6).
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4. Examples
First-time passage – Collision kernels:

- Translational Langevin equation

- Rotational Langevin equation

Morán, J., & Kholghy, M. R. (2023). Theoretical derivation of particle collision kernels and its 

enhancement at high concentration from a first-time-passage approach in the diffusive 

regime. Aerosol Science and Technology, 1-23.
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4. Examples

Focusing lenses are devices 
designed for focusing particle 
beams along a centerline the same 
way we focus a beam of light.

Brownian motion becomes 
essential when trying to focus 
small nanoparticles down to 5 nm 
in diameter.

Wang, X., Kruis, F. E., & McMurry, P. H. (2005). Aerodynamic focusing of nanoparticles: I. Guidelines for 

designing aerodynamic lenses for nanoparticles. Aerosol Science and Technology, 39(7), 611-623.
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4. Examples

Calculated particle trajectories for the 
gravitational settling of 10,100,1000 nm 
spherical particles in still air. The starting 
point is indicated; it is seen that the 1000 nm 
particle has an average settling time 2900 s 
dominated by gravitation force, while the 10 
nm particle wanders considerably before 
settling down with 106 s. The 100 nm 
particle has aspects of both deterministic 
settling and stochastic Brownian motion 
with a 105 s.

Suresh, V., & Gopalakrishnan, R. (2021). Tutorial: Langevin Dynamics methods for aerosol particle 

trajectory simulations and collision rate constant modeling. Journal of Aerosol Science, 155, 105746.
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4. Examples

Particle sedimentation

A simulation using ESPResSo molecular 
dynamics code.

Unlike the left-hand side case, the righ-hand 
side considers hydrodynamic interactions for 
particle sedimentation in a liquid.

Using Langevin equation to obtain the 
trajectory of particles and the Lattice 
Boltzmann method for the fluid flow (2-ways 
coupling).

https://youtube.com/shorts/MGqV_OSsgvc 

https://youtube.com/shorts/MGqV_OSsgvc
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4. Examples

Granular flow through a narrow pipe

Riethmüller, T., Schimansky-Geier, L., Rosenkranz, D., & Pöschel, T. (1997). Langevin equation 

approach to granular flow in a narrow pipe. Journal of statistical physics, 86, 421-430.
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Suggested reading

o Bian, X., Kim, C., & Karniadakis, G. E. (2016). 111 years of Brownian 

motion. Soft Matter, 12(30), 6331-6346.

o Chandrasekhar, S. (1943). Stochastic problems in physics and 

astronomy. Reviews of modern physics, 15(1), 1.

o Ermak, D. L., & Buckholz, H. (1980). Numerical integration of the Langevin 

equation: Monte Carlo simulation. Journal of Computational Physics, 35(2), 

169-182.

o Suresh, V., & Gopalakrishnan, R. (2021). Tutorial: Langevin Dynamics 

methods for aerosol particle trajectory simulations and collision rate constant 
modeling. Journal of Aerosol Science, 155, 105746.
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1 Binomial description of Brownian motion

In this section, we try to model the movement of a particle suspended in a fluid neglecting any
external force such as gravity or electric. For this purpose, we will use tools coming from modeling
stochastic processes. Such tools include the Bernoulli and Binomial processes. These are general
tools that can be applied for any stochastic process provided they respect the assumptions of the
models (you could use them in your own research!). Indeed, I used this approach to obtain a Monte
Carlo method to solve the Langevin equation in a computationally efficient way [1].

1.1 Bernoulli process

A particle moves in a 1d lattice with equal probability to move right (+λp) and left (−λp) and
assuming zero probability to stay in the same position after a time step ∆t (time required to move
λp). Considering that, a Bernoulli process is stochastic with a binary outcome with a known constant
probability of success (e.g., flipping a coin and observing if the head or tail is facing upwards). The
outcomes of a Bernoulli process are conventionally referred to as success and failure. In the case of
a particle moving along a 1d axis, we can arbitrarily and without loss of generality call the +λp
displacement as the success and −λp the failure outcome of the Bernoulli process.

In a mathematical and short form, we can introduce the following stochastic variable,

Y ∼ Be(q)

meaning that Y is distributed Bernoulli with parameter q = 1/2 corresponding to the probability
of success. Any Bernoulli process will have the following mass density function,

f(Y = y) = qy(1− q)1−y; q = 1/2; y ∈ {0, 1} (1.1)

where the stochastic variable y can take two values, namely y = 1 for success (+λp displacement)
and y = 0 for failure (−λp displacement). In this particular case, the mass density function of
Eq. (1.1). The advantage of such a random variable is the possibility to express the displacement of
the particle ∆x after a realization of the Bernoulli process as,

∆x = λpy − λp(1− y) = λp(2y − 1) (1.2)

We can calculate the expected displacement as follows,

E[∆x] = E[λp(2y − 1)]

= λp(2E[y]− 1)

= λp(2(1/2)− 1) = 0 (1.3)

In the same way, we can calculate the expected squared displacement,

E[∆x2] = E[λ2p(2y − 1)2]

= λ2p(4E[y
2]− 4E[y] + 1)

= λ2p(4(1/2)− 4(1/2) + 1) = λ2p (1.4)

Considering the inherent isotropy of the problem, it makes sense to have a 0 expected or average
displacement. It is, however, less evident that the mean-squared displacement is non-null. The
definition of the Bernoulli process is a necessary step for what will come later. Also, it is not
enough to describe the position of the particle after n random displacements of the particles because
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Bernoulli only models the transition from one initial location to the two local neighbor lattice sites.
If we want to study the particle movement after that time, then we need another model which is
the binomial process described in the following section.

1.2 Binomial process

A binomial process involves a random variable counting the number of success k from a total of n
realizations of the corresponding Bernoulli process. In a mathematical concise way, we can write,

K ∼ Bin(n, q)

meaning that the variable K is distributed Binomial with parameters n and q = 1/2 as previously
defined. Any Binomial process will have the following mass density function,

f(K = k) =

(
n
k

)
qk(1− q)n−k =

n!

k!(n− k)!
qk(1− q)n−k, k ∈ [0, n] (1.5)

where the random variable k can take any integer value from k = 0 (only failures, the particle moved
−nλp) to k = n (only successes, the particle moved +nλp).

Introducing a random variable for the particle displacement in n time steps as,

∆x = λpk − λp(n− k) = λp(2k − n) (1.6)

Therefore, the expected displacement and mean squared displacement in n∆t can be calculated
as,

E[∆x] = E[λp(2k − n)]

= λp(2E[k]− n)

= λp(2(n/2)− n) = 0 (1.7)

E[∆x2] = E[λ2p(2k − n)2]

= λ2p(4E[k
2]− 4nE[k] + n2)

= λ2p(4(n/2 + n(n− 1)/4)− 4n(n/2) + n2)

= nλ2p (1.8)

Where the moments of the distribution (1.5) are E[k] = n/2 and E[k2] = n/2 + n(n − 1)/4.
Eq. (1.8) is of great importance to us, it states that average (or expected) squared displacement
corresponds to the number of trials n times the squared displacement of a time step.

It is interesting to note that in the limit n→ ∞, the binomial distribution (1.5) tends to the
following Gaussian distribution where k̃ is a continuous analogous to k,

f(k̃) =
1√

2πnq2
e−(k̃−nq)2/(2nq2), n→ ∞, q = 1/2 (1.9)

where E[k̃] = n/2 and E[k̃2] = n2/4 + n/4. Based on eq. (1.6) replacing k̃ by q(∆x/λp + n) and
considering the Jacobian of this change of variable q/λp,

f(∆x) =
1√

2πnλ2p

e−∆x2/(2nλ2
p), n→ ∞ (1.10)
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This equation is consistent with Einstein’s theory of Brownian motion when 2Dt = nλ2p,
considering n = t/∆t obtaining D = λ2p/(2∆t).

f(x) =
1

(4πDt)1/2
e−∆x2/(4Dt), t≫ τ

where τ = m/f is the particle momentum relaxation time.

Now, considering the following property of probability P (A ∩B ∩ C) = P (A)P (B)P (C) which
means that the probability to have simultaneously the values of A, B , and C is the product of their
probabilities when they are not correlated. We can assume that in Brownian motion, the movement
along each axis is uncorrelated, and considering the 3d squared displacement ∆r2 = ∆x2+∆y2+∆z2,

f(∆r) = f(∆x)f(∆y)f(∆z)

f(∆r) =

(
1

(4πDt)1/2
e−∆x2/(4Dt)

)(
1

(4πDt)1/2
e−∆y2/(4Dt)

)(
1

(4πDt)1/2
e−∆z2/(4Dt)

)

f(∆r) =
1

(4πDt)3/2
e−∆r2/(4Dt), t≫ τ (1.11)

Here, it is important to remember the mean displacement and mean squared displacement for a
particle in 3d after a time t≫ τ ,

E[∆r] = 0

E[∆r2] = 6Dt, t≫ τ

2 Chandrasekhar analytical treatment of the Langevin equation

In this section, we will reproduce the analytical development of Chandrasekhar [2] to solve the
Langevin equation. I hope to provide you here with a detailed derivation of the probability density
function for the particle’s velocity and position. In the notation of Chandrasekhar’s work, the
velocity vector of the Brownian particle is denoted in bold as u = (ux, uy, uz). The Langevin
equation can be written as,

m
du

dt
= −fu+mA(t)

where m and f are the particle’s mass and friction coefficient, respectively. The term mA(t) is the
Brownian force. We can simplify this equation by defining the momentum relaxation frequency
β = f/m = τ−1,

du

dt
= −βu+A(t) (2.12)

We recall that Eq. (2.12) is a stochastic differential equation and thus its solution should be
interpreted in terms of probability density functions (PDF). Thus, solving the Langevin equation
means finding the PDF denoted as W (u, t;u0) representing the probability of having a velocity u
at time t given a known initial velocity u0 at time t = 0. Once we obtain such a PDF. Similarly, we
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also search for the PDF W (r, t; r0) representing the probability of finding the Brownian particle at
position r at time t given a known initial position r0 at time t = 0. The following sections explain
in detail how Chandrasekhar obtained such PDFs.

The following assumptions are necessary for the mathematical developments presented below,

• A(t) is independent of u

• A(t) changes extremely fast compared to u

2.1 Velocity probability density function

We know the following boundary conditions,

W (u, t) → δ(ux − ux,0)δ(uy − uy,0)δ(uz − uz,0), t→ 0 (2.13a)

W (u, t) →
[

m

2πkBT

]3/2
e−m|u|2/(2kBT ), t→ ∞ (2.13b)

where δ(. . . ) are Dirac delta functions. Eq. (2.13a) just means that the initial velocity is
deterministic (ux,0, uy,0, uz,0). Eq. (2.13b) indicates that the particle will be thermally equilibrated
with the surrounding fluid and thus its velocity should follow the Maxwellian distribution shown in
this equation where |u| denotes the magnitude of the velocity, kB is the Boltzmann constant, and T
the fluid temperature.

We can solve Eq. (2.12) by multiplying both sides of the equation by eβt and then integrating in
time,

eβt
du

dt
= −eβtβu+ eβtA(t) (2.14)

eβt
du

dt
+ eβtβu = eβtA(t) (2.15)

The two terms on the left of this equation can be grouped using the derivative of the product
rule,

d

dt
(ueβt) = eβtA(t) (2.16)

Now we integrate both sides of this equation in time,∫ t

0

d

ds
(ueβs) ds =

∫ t

0
eβsA(s) ds (2.17)

Rearranging the left-hand side of this equation and using the fundamental theorem of calculus
we obtain,

d

ds

(∫ t

0
ueβs ds

)
=

∫ t

0
eβsA(s) ds (2.18)

ueβt − u0 =

∫ t

0
eβsA(s) ds (2.19)
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Dividing both sides of this equation by eβt we obtain,

u− u0e
−βt = e−βt

∫ t

0
eβsA(s) ds (2.20)

Taking the limit t→ ∞ on both sides of Eq. (2.20) we conclude that the right-hand side term
should become a Maxwellian velocity distribution according to the boundary condition (2.13b).
Now, owing to the difference in time scale between the fluctuations in the Brownian force compared
to the fluctuations in the particle velocity, we can decompose the left-hand side of Eq. (2.20) into
a sum of time intervals short enough to consider the exponential terms to be constant while A(t)
will experience many variations. Based on this idea, we can use the lemma-1 from Chandrasekhar’s
work,

Chandrasekhar lemma 1:

R =

∫ t

0
ψ(s)A(s)ds (2.21a)

W (R) =
1[

4πq
∫ t
0 ψ

2(s)ds
]3/2 exp

(
− |R|2

4q
∫ t
0 ψ

2(s)ds

)
; q = βkBT/m (2.21b)

This remarkable lemma allows us to obtain an analytical expression for the probability
distribution W (R) of any vector R provided its value is given by a time integral like the one
presented in Eq. (2.21a). This means that W (R) is given by Eq. (2.21b) regardless of the
distribution of A(s) given that it variates extremely fast in time (or the mathematical sum
will have an infinite number of terms). Intuitively, we can say that its explanation is probably
related to the central limit theorem which established that regardless of the distribution of a
random variable, the sum of infinite values of such variable will have a Gaussian distribution.

Now, we use this lemma to solve the right-hand side of Eq. (2.20) so we define,

R = e−βt

∫ t

0
eβsA(s) ds =

∫ t

0
eβ(s−t)A(s) ds =

∫ t

0
ψ(s)A(s)ds

Therefore, the function ψ(s) for this integral is,

ψ(s) = eβ(s−t)

Now, to obtain the PDF W (R) we need to determine the following integral,∫ t

0
ψ2(s)ds =

∫ t

0
e2β(s−t)ds =

1

2β
(1− e−2βt)

Now, we simply replace this expression into Eq. (2.21b) to obtain W (R),

W (R) =
1

[4πq/(2β)(1− e−2βt)]
3/2

exp

(
− |R|2

4q/(2β)(1− e−2βt)

)
Replacing the variable q = βkBT/m,
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W (R) =

[
m

2πkBT (1− e−2βt)

]3/2
exp

(
− m|R|2

2kBT (1− e−2βt)

)
According to the left-hand side of Eq. (2.20) we have R = u− u0e

−βt so we can replace it in
the previous equation to obtain,

W (u, t;u0) =

[
m

2πkBT (1− e−2βt)

]3/2
exp

(
− m|u− u0e

−βt|2

2kBT (1− e−2βt)

)
(2.22)

We can verify that Eq. (2.22) becomes a Maxwellian in the limit t → ∞ as the exponential
terms will vanish.

2.2 Position probability density function

We can use similar reasoning and make use of the same lemma-1 to obtain an analytical solution
of the Langevin equation for the vector position r of the particle at time t. For that purpose, we
simply express the position as the integral of the velocity,

r − r0 =

∫ t

0
u(s)ds (2.23)

From Eq. (2.20) we know an expression for the velocity,

u− u0e
−βt = e−βt

∫ t

0
eβsA(s) ds

To avoid confusion we can re-write this equation by replacing the time t with s and introducing
a new variable for the integral s′,

u(s) = u0e
−βs + e−βs

∫ s

0
eβs

′
A(s′) ds′

Thus, combining these two expressions we obtain,

r − r0 =

∫ t

0

[
u0e

−βs + e−βs

∫ s

0
eβs

′
A(s′) ds′

]
ds (2.24)

We can integrate the first term of the right-hand side of Eq. (2.24),∫ t

0
u0e

−βsds = − 1

β
u0(e

−βt − 1)

Then, we replace into and re arrange Eq. (2.24),

r − r0 +
1

β
u0(e

−βt − 1) =

∫ t

0

[
e−βs

∫ s

0
eβs

′
A(s′) ds′

]
ds (2.25)

In the current form of Eq. (2.25) we cannot directly apply the lemma-1 and we need a strategy
to simplify this equation. We can proceed to integration by parts (

∫
ũdṽ = ũṽ −

∫
ṽdũ) considering

the following change of variables, {
ũ =

∫ s
0 e

βs′A(s′) ds′

dṽ = e−βsds
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where the corresponding dũ and ṽ are,{
dũ = d

ds

(∫ s
0 e

βs′A(s′) ds′
)
ds = eβsA(s)ds

ṽ = − 1
β e

−βs

Then, the right-hand side of Eq. (2.24) becomes,

∫ t

0

[
e−βs

∫ s

0
eβs

′
A(s′) ds′

]
ds = − 1

β
e−βs

∫ s

0
eβs

′
A(s′) ds′ +

∫ t

0

1

β
e−βseβsA(s)ds

= − 1

β
e−βt

∫ t

0
eβsA(s) ds+

1

β

∫ t

0
A(s)ds

=
1

β

∫ t

0

(
1− eβ(s−t)

)
A(s) ds

Now, we can replace back into Eq. (2.24),

r − r0 +
1

β
u0(e

−βt − 1) =
1

β

∫ t

0

(
1− eβ(s−t)

)
A(s) ds (2.26)

At this point we can directly use lemma-1 to solve Eq. (2.26) by defining,

R =
1

β

∫ t

0

(
1− eβ(s−t)

)
A(s) ds

Therefore, the function ψ(s) for this integral is,

ψ(s) =
1

β

(
1− eβ(s−t)

)
Once again, we need to determine the following integral,

∫ t

0
ψ2(s)ds =

∫ t

0

1

β2

(
1− eβ(s−t)

)2
ds

=
1

β2

∫ t

0

(
1− 2eβ(s−t) + e2β(s−t)

)
ds

=
t

β2
− 2

β3

(
1− e−βt

)
+

1

2β3

(
1− e−2βt

)
=

1

2β3

(
2βt− 3 + 4e−βt − e−2βt

)
Now, we simply replace this expression into Eq. (2.21b) to obtain W (R),

W (R) =
1

[4πq/(2β3) (2βt− 3 + 4e−βt − e−2βt)]
3/2

exp

(
− |R|2

4q/(2β3) (2βt− 3 + 4e−βt − e−2βt)

)
Based on the left-hand side of Eq. (2.25) we have R = r − r0 +

1
βu0(e

−βt − 1) and considering
q = βkBT/m. Therefore, we finally obtain the probability density function to have the particle at
position r at time t,
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W (r, t; r0) =

[
mβ2

2πkBT (2βt− 3 + 4e−βt − e−2βt)

]3/2
exp

−
mβ2

∣∣∣r − r0 +
u0
β

(
e−βt − 1

)∣∣∣2
2kBT (2βt− 3 + 4e−βt − e−2βt)


(2.27)

We can verify that in the limit t≫ β−1 the position of the particle follows this dstribution,

W (r, t; r0) =
1

(4πDt)3/2
exp

(
−|r − r0|2

4Dt

)
; t≫ β−1 (2.28)

where the diffusion coefficient of the particle is D = kBT/(mβ). This is equivalent to Eq. (1.11)
derived previously based on the binomial approach.
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